Bibliography¶
[BCL+15] | Kristian Berland, Valentino R Cooper, Kyuho Lee, Elsebeth Schröder, T Thonhauser, Per Hyldgaard, and Bengt I Lundqvist. Van der waals forces in density functional theory: a review of the vdw-df method. Reports on Progress in Physics, 78(6):066501, 2015. doi:10.1088/0034-4885/78/6/066501. |
[BH14] | Kristian Berland and Per Hyldgaard. Exchange functional that tests the robustness of the plasmon description of the van der waals density functional. Physical Review B, 89:035412, Jan 2014. doi:10.1103/PhysRevB.89.035412. |
[DRSchroder+04] | M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist. Van der waals density functional for general geometries. Physical Review Letters, 92:246401, Jun 2004. doi:10.1103/PhysRevLett.92.246401. |
[ERM+10] | J Enkovaara, C Rostgaard, J J Mortensen, J Chen, M Dułak, L Ferrighi, J Gavnholt, C Glinsvad, V Haikola, H A Hansen, H H Kristoffersen, M Kuisma, A H Larsen, L Lehtovaara, M Ljungberg, O Lopez-Acevedo, P G Moses, J Ojanen, T Olsen, V Petzold, N A Romero, J Stausholm-Møller, M Strange, G A Tritsaris, M Vanin, M Walter, B Hammer, H Häkkinen, G K H Madsen, R M Nieminen, J K Nørskov, M Puska, T T Rantala, J Schiøtz, K S Thygesen, and K W Jacobsen. Electronic structure calculations with gpaw: a real-space implementation of the projector augmented-wave method. Journal of Physics: Condensed Matter, 22(25):253202, 2010. doi:10.1088/0953-8984/22/25/253202. |
[GBB+09] | Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila Dabo, Andrea Dal Corso, Stefano de Gironcoli, Stefano Fabris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Christos Gougoussis, Anton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero, Ari P Seitsonen, Alexander Smogunov, Paolo Umari, and Renata M Wentzcovitch. Quantum espresso: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39):395502, 2009. doi:10.1088/0953-8984/21/39/395502. |
[Gri06] | Stefan Grimme. Semiempirical gga-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15):1787–1799, 2006. doi:10.1002/jcc.20495. |
[GEG11] | Stefan Grimme, Stephan Ehrlich, and Lars Goerigk. Effect of the damping function in dispersion corrected density functional theory. Journal of Computational Chemistry, 32(7):1456–1465, 2011. doi:10.1002/jcc.21759. |
[Ham13] | D. R. Hamann. Optimized norm-conserving vanderbilt pseudopotentials. Physical Review B, 88:085117, Aug 2013. doi:10.1103/PhysRevB.88.085117. |
[HBSchroder14] | Per Hyldgaard, Kristian Berland, and Elsebeth Schröder. Interpretation of van der waals density functionals. Physical Review B, 90:075148, Aug 2014. doi:10.1103/PhysRevB.90.075148. |
[JSCH06] | Petr Jurecka, Jiri Sponer, Jiri Cerny, and Pavel Hobza. Benchmark database of accurate (mp2 and ccsd(t) complete basis set limit) interaction energies of small model complexes, dna base pairs, and amino acid pairs. Physical Chemistry Chemical Physics, 8:1985–1993, 2006. doi:10.1039/B600027D. |
[KlimevsBM10] | Jiří Klimeš, David R Bowler, and Angelos Michaelides. Chemical accuracy for the van der waals density functional. Journal of Physics: Condensed Matter, 22(2):022201, 2010. doi:10.1088/0953-8984/22/2/022201. |
[KlimevsBM11] | Jiří Klimeš, David R. Bowler, and Angelos Michaelides. Van der waals density functionals applied to solids. Physical Review B, 83:195131, May 2011. doi:10.1103/PhysRevB.83.195131. |
[KS65] | W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140:A1133–A1138, Nov 1965. URL: https://link.aps.org/doi/10.1103/PhysRev.140.A1133, doi:10.1103/PhysRev.140.A1133. |
[KJ99] | G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59:1758–1775, Jan 1999. doi:10.1103/PhysRevB.59.1758. |
[LMK+10] | Kyuho Lee, Éamonn D. Murray, Lingzhu Kong, Bengt I. Lundqvist, and David C. Langreth. Higher-accuracy van der waals density functional. Physical Review B, 82:081101, Aug 2010. doi:10.1103/PhysRevB.82.081101. |
[MOB12] | Miguel A.L. Marques, Micael J.T. Oliveira, and Tobias Burnus. Libxc: a library of exchange and correlation functionals for density functional theory. Computer Physics Communications, 183(10):2272 – 2281, 2012. doi:https://dx.doi.org/10.1016/j.cpc.2012.05.007. |
[MHJ05] | J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen. Real-space grid implementation of the projector augmented wave method. Physical Review B, 71:035109, Jan 2005. doi:10.1103/PhysRevB.71.035109. |
[RomanPerezS09] | Guillermo Román-Pérez and José M. Soler. Efficient implementation of a van der waals density functional: application to double-wall carbon nanotubes. Physical Review Letters, 103:096102, Aug 2009. doi:10.1103/PhysRevLett.103.096102. |
[Sil08] | Pier Luigi Silvestrelli. Van der waals interactions in dft made easy by wannier functions. Physical Review Letters, 100:053002, Feb 2008. doi:10.1103/PhysRevLett.100.053002. |
[TS09] | Alexandre Tkatchenko and Matthias Scheffler. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Physical Review Letters, 102:073005, Feb 2009. doi:10.1103/PhysRevLett.102.073005. |